
OAM: An Ontology Application Management

Framework for Simplifying Ontology-Based

Semantic Web Application Development

Marut Buranarach*, Thepchai Supnithi†, Ye Myat Thein‡

and Taneth Ruangrajitpakorn§

National Electronics and Computer Technology Center (NECTEC)

Pathumthani, Thailand
*marut.bur@nectec.or.th

†thepchai.sup@nectec.or.th
‡yemyatthein@gmail.com
§taneth.rua@nectec.or.th

Thanyalak Rattanasawad

Department of Computer Engineering

Chulalongkorn University, Bangkok, Thailand

thanyalak.rattanasawad@gmail.com

Konlakorn Wongpatikaseree¶, Azman Osman Lim|| and
Yasuo Tan**

Japan Advanced Institute of Science and Technology (JAIST)

Ishikawa Prefecture, Japan
¶w.konlakorn@jaist.ac.jp

||aolim@jaist.ac.jp
**ytan@jaist.ac.jp

Anunchai Assawamakin

Department of Pharmacology

Mahidol University, Bangkok, Thailand

anunchai.asa@mahidol.ac.th

Received 27 May 2014

Revised 23 December 2014
Accepted 8 March 2015

Although the Semantic Web data standards are established, ontology-based applications built

on the standards are relatively limited. This is partly due to high learning curve and e®orts

demanded in building ontology-based Semantic Web applications. In this paper, we describe an
ontology application management (OAM) framework that aims to simplify creation and

adoption of ontology-based application that is based on the Semantic Web technology. OAM

International Journal of Software Engineering

and Knowledge Engineering

Vol. 26, No. 1 (2016) 115–145

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194016500066

115

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0218194016500066

introduces an intermediate layer between user application and programming and development
environment in order to support ontology-based data publishing and access, abstraction and

interoperability. The framework focuses on providing reusable and con¯gurable data and ap-

plication templates, which allow the users to create the applications without programming skill
required. Three forms of templates are introduced: database to ontology mapping con¯guration,

recommendation rule and application templates. We describe two case studies that adopted the

framework: activity recognition in smart home domain and thalassemia clinical support system,

and how the framework was used in simplifying development in both projects. In addition, we
provide some performance evaluation results to show that, by limiting expressiveness of the rule

language, a specialized form of recommendation processor can be developed for more e±cient

performance. Some advantages and limitations of the application framework in ontology-based

applications are also discussed.

Keywords: Semantic Web application framework; ontology application framework; ontology-

based data publishing and access; knowledge-based application development tools.

1. Introduction

With the Semantic Web data standards being established, some organizations and

initiatives started creating and sharing their data in the Resource Description

Framework (RDF) format, aka. Linked data initiative [1]. Further, domain knowl-

edge in di®erent areas has been increasingly captured in ontology form that can be

shared as the Web Ontology Language (OWL) data that can be linked with the

RDF data. Although creation of the Semantic Web data rapidly grows, e.g.

the Linked data cloud [1], ontology-based applications built on the Semantic Web

data are relatively limited. This is partly due to high learning curve and e®orts

demanded in building ontology-based Semantic Web applications. To facilitate de-

velopment of such applications, development tools should allow application devel-

opers to focus more on domain problems and knowledge rather than implementation

details. Put another way, application development tools should not only be designed

for technologists but also for researchers or domain experts who are non-technology

experts. Simplifying development of Semantic Web applications is important in

promoting Linked Data publishing and Semantic Web application deployment [2].

Much of software development e®ort is caused by re-invention of core concepts and

components in building applications from scratch [3]. An application framework is a

reusable, `semi-complete' application that can be specialized to produce custom appli-

cations [3]. Unlike software library, an application framework is usually more targeted

for a speci¯c class of software [4]. This paper describes an application framework

designed for ontology application that introduces an intermediate layer between user

application and programming and development environment. It focuses on supporting

ontology-based data publishing and access, abstraction and interoperability. The

framework provides reusable and con¯gurable data and application templates, which

allow the users to create ontology applications without programming skills required.

The Ontology Application Management (OAM) framework is a development

platform for simplifying creation and adoption of ontology-based Semantic Web

application, focusing on semantic search and recommender system applications.

116 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

OAM introduces specialized templates for database to ontology data mapping,

recommendation rule as well as application templates. Our framework is di®erent

from existing Semantic Web application frameworks in that it does not require

user's programming skill in building a Semantic Web application prototype. Thus, it

is suitable for researchers who want to experiment on research ideas that can be

realized by means of the Semantic Web technology. Application template is typically

ideal for rapid prototyping and hypotheses testing. The framework also provides

application-level APIs to support a more advanced application development.

In this paper, we describe the design and implementation of the OAM framework

focusing on three main components: database to ontology mapping, recommendation

management and application templates and APIs. The community-driven software

development model used in the tool development is also elaborated. Two research

projects that highlight the utility of the framework are discussed: human activity

recognition in smart home environments and an ontology-based clinical support

system. The paper is organized as follows. Section 2 discusses related work and

systems. Section 3 focuses on some unique design approaches and implementation

details of the OAM framework. Section 4 discusses two case studies that adopted the

OAM framework. In Sec. 5, the potential roles and bene¯ts of the framework are

discussed.

2. Background and Related Work

2.1. Ontology-based data publishing and access

Data integration is important for Semantic Web application development as the data

can come from di®erent sources. There are three approaches in using ontology to

augment data integration: single, multiple and hybrid ontology approach [5]. In the

single ontology approach, all information sources are related to one global ontology,

which is used as a global schema that provides a virtual view of the underlying sources

which store the real data [5]. An example is the Ontology-based Data Access (OBDA)

approach [6] which uses ontology as the global uni¯ed view for accessing the data

stored at the sources. Mappings are required to specify the semantic correspondence

between the uni¯ed view of the domain and the data stored at the sources. In the

multiple ontology approach, each information source is described by its own ontology

or \local ontology". The Linked Data initiative is an example of the multiple ontology

approach. The Linked Data sources either use their own schemata or use a mixture

of terms from existing, well-known vocabularies together with self-de¯ned terms

speci¯c to the particular data source [1]. Thus, schema mapping and data fusion are

often needed for mapping of terms from di®erent vocabularies to the target schema

[7], aka the hybrid ontology approach. The Linked Data Integration Framework

(LDIF) [7] is an example of the hybrid ontology approach applied to integrating the

Linked Data sources. LDIF provides a mapping language to allow for translating data

from the various vocabularies into a consistent local target vocabulary.

OAM: An Ontology Application Management Framework 117

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

A data integration system typically aims to give users or applications the ability

to query information from di®erent sources and to return the results in a uniform

way. Architecture of such a system can be categorized into two types: Virtual

Integrated Systems and Materialized systems [8]. OBDA systems are typically in the

former category including MASTRO [9], OPTIQUE [10], etc. The queries formu-

lated using ontology terms are automatically translated using mappings into the

queries over the data sources. The main advantage of this approach is that the data

source is autonomous and always up to date. In the materialized systems approach,

redundant copy of the source data is extracted from the source data periodically.

The global schema must be de¯ned to allow integration of the data from di®erent

sources. Data warehousing and Linked Data integration exemplify such an inte-

gration approach. Although this approach bene¯ts from simple integration and

query method, which does not require query translation, the maintenance of the up-

to-datedness of the replicated data is more di±cult [8]. Applications of this ap-

proach are typically analysis-driven applications rather than transaction-driven

applications.

The OAM framework adopts the single ontology and the materialized system

approaches. A global schema or domain ontology is required in building an OAM

application. The OAM application operates on the replicated copy of the data in

the RDF format published from the original data sources. Unlike OBDA systems,

ontology-based data mappings are only used for data publishing but not when

querying. This has an advantage of simpler querying, which is based only on

SPARQL. The framework is more suitable for supporting analysis-driven appli-

cations where maintenance of up-to-datedness of the replicated RDF data is less

complex.

2.2. Semantic Web application framework

Much of software development e®ort is caused by re-invention of core concepts and

components in building applications from scratch [3]. An application framework is

a reusable, `semi-complete' application that can be specialized to produce custom

applications [3]. Unlike software library or toolkit which is a set of related and

reusable classes designed to provide useful, general-purpose functionality, a

framework is a set of cooperating classes that make up a reusable design for a

speci¯c class of software [4]. Thus, by adopting a framework, an application can be

customized by creating application speci¯c subclasses of abstract classes of the

framework.

Application framework for the Semantic Web domain may be grouped into two

categories: programming environment and development environment. Although

distinctions between both categories are sometimes blurred, less programming e®ort

is normally required for the latter category, which supports high-level abstraction.

Development environment tools typically aim at reducing the user e®ort by pro-

viding facilities supporting common tasks required in developing Semantic Web

118 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

applications, e.g. Prot�eg�e,a AllegroGraph,b Jena framework [11], TopBraid Suite,c

etc. Classi¯cation and de¯nitions of components for Semantic Web application

framework are provided in [12]. There are some application frameworks that aim

to simplify and promote rapid development of Semantic Web applications including

the Semantic Web Application Framework (SWAF) [13], Callimachus,d etc.

A speci¯c kind of Semantic Web application framework focuses on supporting

building Web applications on top of Linked Data or \Linked Data-driven appli-

cations" [14]. Development of Linked data applications can utilize similar tools to

development of Semantic Web applications. Some speci¯c issues to Linked Data

applications include data publishing, which turns any kind of structured data into

RDF and interlinks the dataset, and consumption process, which consists of dis-

covery, access and processing [15]. Functions of tools and systems designed to sim-

plify Linked Data-driven application development process range from supporting

Linked Data publishing from existing data sources and consume the data over

Linked Data sources, such as LMF [16], and supporting Linked Data integration,

mash-up, and analysis framework, such as LDIF [7], Sigmae and Callimachus.

The OAM framework is di®erent from existing Semantic Web application fra-

meworks in its proposed uses of reusable and con¯gurable data and application

templates in the intermediate layer between user application and programming and

development environment. The framework provides some graphical user interfaces to

allow the user to manipulate the data and application templates, in customizing the

application. Thus, it does not require user's programming skill in building an on-

tology-based application prototype. The framework di®ers from Linked Data-driven

application platforms in that it requires domain ontology in publishing and con-

suming the RDF data. Thus, it only supports publishing and consuming the RDF

data that come from the sources that agree on the same domain ontology. Some

applications include enterprise or domain-speci¯c applications that require common

domain ontology in publishing, integrating and consuming the data from di®erent

data sources.

3. Design and Implementation of the OAM Framework

3.1. Community-driven software tool development

A community-driven approach was applied to the development of the OAM software

toolf [17]. The approach focused on conducting related activities to support user/

developer community in augmenting software tool development. The activities in-

cluded both adoption and development support activities. In this approach, user

ahttp://protege.stanford.edu/
bhttp://www.franz.com/agraph/allegrograph/
chttp://www.topquadrant.com/products/
dhttp://callimachusproject.org/
ehttp://sig.ma/
fhttp://lst.nectec.or.th/oam/

OAM: An Ontology Application Management Framework 119

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

involvement and support is more clearly targeted. Our experience has shown that

this approach helped to promote communication and co-creation between the

community and researchers, which subsequently facilitated software tool evolve-

ment. The approach can be illustrated as a software development cycle as shown in

Fig. 1.

In this model, contributions from user/ developer community are signi¯cant to

the development and adoption of a software tool. In supporting tool adoption,

training and workshop activities can be organized to introduce the tool to the

community. In addition, some case studies should be provided to demonstrate ap-

plication potentials of the tool. Related student theses or research projects that

adopt the tool should be set up. The community users who adopted the tool can help

to provide feedbacks, testing and evaluation results, which can contribute to gath-

ering additional requirements for improving the tool. In supporting tool develop-

ment, university teachers can integrate some parts of the tool development as

student assignments for class projects or student theses. In addition, coding mara-

thon activity, which is popularly adopted in opensource software development, can

be organized to promote collaborative e®orts between researchers and developers in

improving design and implementation of the tool.

Since the initial release of the OAM software tool in 2010, we have conducted user

training sessions to introduce the tool to the Semantic Web interest group in

Thailand. Each session comprised of two hand-on trainings: ontology developmentg

and ontology application development. Feedbacks from the participated users, who

were not only technologists but also domain experts who do not have programming

skill, were gathered as user requirements to guide the tool improvement. Since the

number of community users is small, handling the user requirements can be more

focused with continuous follow-up. In addition, some university teachers, who

have participated in the trainings, have taken the requirements and assigned them

as student class projects. In addition, we organized a coding marathon activity

which involved students, researchers and professional developers. These supporting

Fig. 1. A community-driven software tool development cycle.

gHozo ontology editor (http://www.hozo.jp/) was used in the ontology development trainings.

120 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

activities have collectively contributed to improving the tool both in terms of

functionalities and user interface design. Further, several projects and theses were

set up and adopted the tool, which helped to demonstrate potential applications of

the tool.

3.2. Conceptual architecture

The Ontology Application Management (OAM) framework is an application de-

velopment platform aims to simplify creation and adoption of an ontology-based

Semantic Web application. The application framework di®ers from the existing

tools in two main aspects. First, it is an integrated platform that supports both RDF

data publishing from databases based on domain ontology and processing of the

published data in ontology-based Semantic Web applications, i.e. semantic search

and recommender system applications. Second, the framework provides some reus-

able and con¯gurable data and application templates that can be customized

for di®erent domain ontologies using con¯guration GUIs. Thus, it does not require

user's programming skill in building an ontology-based Semantic Web application

prototype.

The OAM framework introduces intermediate layers between user application

and existing Semantic Web programming and development environment. Design of

the framework is based on three principles: ontology-based data publishing and

access, abstraction and interoperability. OAM requires ontology as a central struc-

ture for publishing RDF data from database and as a means to access the published

RDF data. The layers introduced by OAM aim to hide complexity of the underlying

Semantic Web data standards and models. The framework is designed to be inde-

pendent of the underlying implemented systems. Thus, wrapper architecture is re-

quired for interoperation with di®erent data formats and systems. Figure 2 shows a

layered architecture of the OAM framework.

Currently, the framework is implemented on top of existing Semantic Web data

and application platforms, i.e. D2RQ [18], Jena's RDF data storage and Jena's

reasoning engine [19]. Additional wrappers for di®erent systems may be added in the

future. The OAM framework adds relational database to ontology data mapping,

recommendation and application templates on top of these systems. The user can use

the provided Web-based management tools in creating and managing an ontology-

based Semantic Web application. OAM also provides Java API to support a more

advanced application development.

3.3. Database to ontology data mapping framework

Ontology-based application development often involves manipulation of instance

data. There are typically two methods in creating instances for ontology classes. The

¯rst method is to manually construct an instance and de¯ne its attribute values

based on a class. This is typically done using instance editor provided in ontology

OAM: An Ontology Application Management Framework 121

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

development tool. The second method is to create instances from some existing

information sources, such as database records. This normally requires mapping

process between the existing database schema and ontology structure [20]. After

the mapping process, a database record can be transformed into a class instance.

This method is most suitable when an organization already stored the data in some

databases. Our framework focuses only on the latter approach in creating instance

data from existing databases.

OAM's data mapping tool supports schema mapping between OWL ontology

and a relational database source. The schema mapping con¯guration template in

OAM is a specialized form of the D2RQ Mapping language [21]. OAM implements

class-based mapping con¯guration, i.e. each chosen class in ontology must have its

own con¯guration. The mapping con¯guration for each class involves two parts:

class-table mapping and property-column mapping.

3.3.1. Class-table mapping

In class-table mapping, the user can de¯ne mapping between an ontology class and a

database table. A property of the ontology class must be chosen to map with the

primary key column of the table. This con¯guration allows the unique identi¯er of

each database record to be transformed to local name identi¯er of each instance of

the class.

In addition, the user can optionally de¯ne subclass mapping between subclasses of

the class and some records of the database table. Speci¯cally, the user can specify

each attribute value of a table column as a determiner for instance of each subclass.

Fig. 2. Layered architecture of the OAM framework.

122 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Without subclass mapping, all database records of the table will be transformed to

instances of the class.

3.3.2. Property-column mapping

In property-column mapping, two types of mapping can be de¯ned: data property

and object property mappings. The user can de¯ne mapping between each property

of a class, i.e. either data property or object property, with a column of a table

with an optional join condition. The join condition is required when the column is

in a di®erent table from that de¯ned in class-table mapping. The property mapping

con¯guration supports one-to-one, one-to-many, many-to-one and many-to-many

relationship types in databases.

One-to-one relationship mapping: In this relationship type, a property of the

class is mapped with a column of the same table de¯ned in the class-table mapping.

In this case, no SQL join statement is needed for the mapping.

One-to-many, Many-to-one and Many-to-many relationship mapping:

In these relationship types, a property of the class is mapped with the column of a

di®erent table from that de¯ned in class-table mapping. In this case, the user must

de¯ne an SQL join condition that may involve some intermediate tables for the

mapping.

3.3.3. Example of database schema to ontology mapping

Figure 3 shows an example of class-based mapping con¯guration used in the OAM

Framework. An example ontology created using Hozo ontology editor, as shown in

Fig. 3(a), consists of two main classes: Person and Occupation. The example data-

base consists of three tables: persons, positions and professions (Fig. 3(b)). Two

mapping con¯gurations are required ��� each mapping con¯guration for each class.

The class-table mappings for Person and Occupation classes with the persons and

professions tables are straightforward because the classes and their unique properties

can be mapped with the tables and their primary keys respectively (Fig. 3(c)).

Finally, subclass mapping is required for the Occupation class. For example, the

records of the professions table, whose profession names are equal to \attorney" or

\solicitor", are assigned as instances of the Lawyer class (Fig. 3(d)). The Person class

contains no subclass thus all the records of the person table are automatically

assigned as instances of the Person class.

The data property-column mappings for both classes and their respective tables

are also straightforward. The person name and occupation name can be mapped

to the columns of their respective tables, i.e. one-to-one relationship type. Thus,

no table joining is required (Fig. 3(e)). The object property-column mapping for the

occupation property of Person class required join conditions over the three tables:

persons, positions and professions, i.e. many-to-one relationship type (Fig. 3(f)). In

current implementation, the OAM mapping con¯guration is subsequently converted

OAM: An Ontology Application Management Framework 123

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

to the D2RQ mapping language which is used by the D2RQ system to generate the

resulted instance data in RDF format.

3.4. Recommendation management framework

One of the applications of the OAM framework is supporting recommender

system application [22] development. Recommender system is a type of system that

(a) Ontology

(c) Class-table mapping

(d) Subclass mapping
for Occupation class

(f) Object property to column
mapping for Person class

persons
pid name pos_id
1 A 1
… … …

professions
prof_id name
1 neurosurgeon
2 plas c surgeon
3 orthoden st
4 a orney
5 solicitor

posi ons
posi on_id name salary profession_id
1 X 10,000 2
… … … …

(b) Database

(e) Data property to column
mapping for Person class

Fig. 3. An example of OAM class-based mapping con¯guration.

124 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

generates meaningful recommendations to support user's decision. Development of

recommender system for the Semantic Web data typically requires ontology, rules

and rule-based inference engine to be applied over the RDF data. To facilitate

development of recommender applications, the OAM framework introduces a rec-

ommendation template which is a speci¯c form of rule language that provides high-

level abstraction in generating recommendation results. Recommendation rules can

be created based on the template using recommendation editor that hides complexity

of rule language syntax.

By adopting the recommendation template approach, implementations of rule

editor and inference engine are less complex comparing to those of the generic rule

editor and rule-based inference engine. In the case study section, we will compare the

performance of the two implementation approaches for generating recommendation

results: generic rule-based inference engine and our SPARQL-based implementation

of inference engine designed for processing rules provided in the template. The results

suggested that, by limiting expressiveness of recommendation rules to the template,

a specialized form of recommendation processor can be developed for more e±cient

system performance.

3.4.1. Recommendation template

The OAM framework focuses on simplifying creation and management of recom-

mendation rules based on a recommendation template. The recommendation tem-

plate consists of three main components: \recommendation", \recommend-of" and

\recommend-to" resources, as shown in Fig. 4. A recommendation rule is created in a

two-step process: create recommendation and link recommendation. Creating rec-

ommendation will create an instance of a recommendation container class, e.g.

\Promotion" where the user can de¯ne conditions of class instances to be the

recommendations, e.g. \Product". Linking recommendation allows the user to de¯ne

Fig. 4. Components of the OAM recommendation template.

OAM: An Ontology Application Management Framework 125

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

conditions of class instances to recommendation receivers, e.g. \Customer". The

framework facilitates the user to create such business logics using a form-based user

interface that hides complexity of the rule syntax to be processed by reasoning engine.

The structure of a recommendation rule created based on the recommendation

template can be summarized as follows.

. Recommendation rule: A recommendation rule consists of rule name, two

condition sets for matching each part of recommendation rules: recommendations

and recommendation receivers, and a property of the receiver class for receiving

the recommendations.

. Condition set: A condition set consists of condition set name, matching class, a

class of the individuals to be matched, and conditions.

. Condition: A condition for matching individuals. It consists of a property chain,

an operator, and a value object.

. Property Chain: A property chain is an ordered series of one or more object-type

properties. Each property links to an individual of the object of a triple recursively

like joining many tables in relational database.

. Operator: An operator for matching or comparing between the condition's value

object and a triple's object. The operators supported are mathematics comparison

operator (¼, >, <, >¼, <¼), string operator (¼, contains). They can be used in

the forms: <property> <operator> <value> and <property> <operator>

<property>. RDF comparison operator (type) can be used in the form

<property> <operator> <class>.

. Object: Object of a condition. It is in three types: literal value, URI, and property

chain node value. A literal value is an RDF literal with a speci¯ed data-type. A

property chain node is a node that refers to value of another property chain,

allowing it to be operated with the literal value of the current condition.

Recommendation rules are stored in an intermediate format using JSON and can

also be exported to a number of interchange formats.

To exemplify the format of the rule template, we make an example of a recom-

mendation "Recommend the products which have discount rate more than 10 per-

cent, and have price more than 10 dollars but less than 15 dollars, to the customers

which have bought products from the store more than 20 times".

Figure 5 illustrates elements of the recommendation rule and linked condition

sets in JSON format. Condition sets are illustrated in Fig. 6. The user can use the

"ClearancePromotion": {

 recOfRule: "DiscountedProduct",

 recToRule: "FrequentCustomer",

 recProperty: "suggestedProducts" }

Fig. 5. Elements of recommendation rule and linked condition sets.

126 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

provided rule editor to create recommendation rules based on the template that hides

the complexity of the created rule syntax. The internal recommendation rule format

can be serialized to a number of rule language formats for interchange with di®erent

rule-based inference engines.

3.4.2. System architecture

The recommendation management framework is designed based on three main

principles: abstraction, extensibility, and interoperability. Abstraction is achieved by

providing higher level of constructs than those provided by the RDF data model for

building Semantic Web-based recommender applications. Extensibility is achieved

by designing each module that is independent of the underlying implemented sys-

tems, i.e. inference engines and databases. Interoperability is achieved by allowing

exports to the standard rule formats to enable interchanging and integration with

other rule-based systems.

Figure 7 illustrates the system architecture of the recommendation management

module. The follows describe details of the related system components.

Recommendation Editor

Fig. 7. Architecture of the OAM recommendation management module.

"DiscountedProduct": {

matchingClass: "http://ex.org/Product", conditions: [

{ propertyChain: ["http://ex.org/discountRate"], operator: ">", object: ["float","10.00"]},

{ propertyChain: ["http://ex.org/price"], operator: ">", object: ["float", "10.00"]},

{ propertyChain: ["http://ex.org/price"], operator: "<", object: ["float", "15.00"]]}

"FrequentCustomer": {

matchingClass: "http://ex.org/Customer",

conditions: [{ propertyChain: ["http://ex.org/boughtRecord", “http://ex.org/boughtTimes”],

operator: ">", object: ["int", "20"]]}

Fig. 6. Example of matching condition sets.

OAM: An Ontology Application Management Framework 127

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

. Triple Store: The module provides database-independent interfaces of common

functions for querying RDF database. This module allows the user to perform

arbitrary queries and also provides query generator with some query templates.

. Recommender: The module for recommendation processing which contains sub-

modules for managing and processing recommendation data: recommendation

rules and recommendation instances.

. Recommendation Rule Manager: The module for recommendation rule

management, which enables the user to create, view, edit, and delete recommen-

dation rules, import other rules in format of the rule template, and export rules to

interchange formats, e.g. RDF, JSON, and RIF [23], and a format of supported

reasoner, such as Jena rule [19] and Notation3 [24].

. Recommendation Processor: The sub-module which provides common inter-

faces and encapsulates algorithms of recommendation creation, and recommen-

dation results generation.

3.4.3. Implementation of the recommendation processor

Recommendation results are generated and linked with the related resources by

passing recommendation rules and data to the recommendation processor. In our

framework, the implementations are categorized into two approaches: rule-based

inference engine approach, and SPARQL-based approach, which are described as

follows.

. Rule-based inference engine approach: We created implementations using

two di®erent rule-based reasoners: Jena inference engine [19] and Euler YAP

Engine [25]. The recommendation processor generated recommendation rules in

form of if-then rule in the supported format of each reasoner. Recommendation

results are created by means of rule-based reasoning. Figure 8 shows an example of

the generated recommendation rule in Jena rule syntax.

. SPARQL-based approach: This approach adopts a SPARQL engine as the

recommendation processor [26][27], and generates recommendation rules in the

@prefix : <http://ex.org/>. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

(?recOf rdf:type :Product) (?recOf :discountRate ?v1) greaterThan(?v1, 10.00)

(?recOf :price ?v2) greaterThan(?v2, 10.00) lessThan(?v2, 15.00) -> (:ProductRec_1 rdf:type

:Product_Rec) (:ProductRec_1 :hasInstances ?recOf) (:ProductRec_1 :hasRecName ‘ProductSetA’)

(:ProductRec_1 :hasRecId ‘1’)

(?recTo rdf:type :Customer) (?recOf :boughtRecord ?v3)

(?v3 :boughtTimes ?v4) greaterThan(?v4, 20) -> (?recTo :hasSuggestedProducts :ProductRec_1)

Fig. 8. Jena rule syntax of the recommendation rule.

128 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

form of SPARQL queries and updates. Figure 9 shows example syntax of an

SPARQL update for generating recommendation results. Currently, it can only

support rules that generate results which do not ¯re another rule.

3.5. Application template and programming interface

3.5.1. Application template

OAM allows the user to apply a provided application template to the RDF data

published based on an ontology to create an ontology-based application. Using ap-

plication template, the user only needs to de¯ne application con¯guration and does

not need programming skill. This is suitable for researchers who want to experiment

on research ideas that can be realized by means of the Semantic Web technology.

Application template is typically ideal for rapid prototyping and hypotheses testing.

Figure 10(b) shows a semantic search application template, which provides a

faceted search [28] interface. Using the provided interface, the end-user can select

a class in the ontology to search for its instance data and de¯ne some search

property conditions. A search allows value comparison using both string and number

PREFIX : <http://ex.org/>. PREFIX rdf: < http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

INSERT {

 ?recTo :hasSuggestedProducts :ProductRec_1.

 :ProductRec_1 rdf:type :Product_Rec.

 :ProductRec_1 :hasInstances ?recOf.

 :ProductRec_1 :hasRecName “ProductSetA”.

 :ProductRec_1 :hasRecId “1”. }

WHERE {

 ?recOf rdf:type :Product. ?recOf :hasDiscountRate ?v1. ?recOf :price ?v2.

 ?recTo rdf:type :Customer. ?recTo :boughtRecord ?v3. ?v3 :boughtTimes ?v4.

 FILTER(?v1 > 10.00) FILTER(?v2 > 10.00) FILTER(?v2 < 15.00) FILTER(?v4 > 20)}

Fig. 9. SPARQL update syntax of the recommendation rule.

(a) Search application con¯guration

Configurable search and display

properties

(b) Search application template

Fig. 10. Example of a faceted search application template and con¯guration.

OAM: An Ontology Application Management Framework 129

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

comparators and semantic-based comparators, i.e. IS-A (or type). The user's faceted

search condition is automatically transformed to a SPARQL query for retrieving the

instance data from the triple store. Figure 10(a) shows a search application con¯g-

uration which allows the user to customize properties in search conditions and dis-

played search results. A property can be de¯ned as a reference property, which is a

property of another class that is referenced by means of a referring property. The

reference property is denoted using the `>>' symbol.

3.5.2. Application programming interface

Application templates and custom applications are built using the OAM API. The

API provides high-level abstraction that hides complexity of the Semantic Web data

standards and models. Class diagram of the API is shown in Fig. 11.

Seven main classes and their main functions are shown: ApplicationTemplate,

Recommender, SemanticSearch, Mapping, RuleHandler, OntologyProcessing and

ServiceRepresentative. The ApplicationTemplate class provides an abstraction for

accessing the instance data based on application con¯gurations. The SemanticSearch

class extends ApplicationTemplate by including functions for accessing search-ap-

plication-speci¯c con¯gurations, applying aggregation functions and result sorting.

The Recommender class extends ApplicationTemplate by including functions for

accessing recommender-application-speci¯c con¯gurations and manipulating rec-

ommendation properties and results. The Mapping class provides an abstraction for

accessing mapping con¯guration and publishing the RDF data from a relational

Fig. 11. Class diagram showing main classes of the OAM API.

130 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

database source based on the mapping con¯guration. The RuleHandler class is re-

sponsible for applying recommendation rules, adding new results to the knowledge

base, obtaining dependency information between rules, and exporting rules. The

ServiceRepresentative class acts as a class factory to create instance of other classes.

The OntologyProcessing class is a utility class that provides an abstraction for

accessing ontology data and handle variation of OWL syntax produced by di®erent

ontology editors.

Figure 12 shows a sequence diagram which exempli¯es application development

using the API in conducting a faceted search function. The application activates the

ServiceRepresentative class for creating an SemanticSearch object named searchObj,

given a class name whose instances will be searched, a directory path to the

knowledge base and a data structure to store the instance data. The parameters are

constructed as four ArrayList <String> objects: properties, operators, literalValues

and refValues. The properties array contains a list of property names used in the

search condition. The operators array contains a list of operators for each respective

property name used in the search condition. The literalValues array contains a

speci¯ed value when the respective property is data property or null when the

property is object property. The refValues array contains a speci¯ed class name

when the respective property is an object property or null when the property is a data

property. Once all of the search conditions are added to the objects, the parameters

are passed to a method of the searchObj object for retrieving the results. The method

subsequently transforms the user's search conditions to a SPARQL query and

returns the results formatted according to the search application con¯guration.

Fig. 12. Sequence diagram showing execution of a faceted search function using the OAM API.

OAM: An Ontology Application Management Framework 131

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

4. Case Studies

This section presents two case studies that demonstrate practicality and applicability

of the OAM framework in real-world settings. Two research projects that adopted

the framework are used as case studies. In one project, OAM was used to support

human activity recognition task in smart home domain [29]. Another project was

development of an ontology-based thalassemia clinical support system for prevention

and control of the disease [30]. Sections 4.1 and 4.2 provide descriptions of the case

studies focusing on the roles and advantages of OAM framework in simplifying de-

velopment in both projects. Section 4.3 provides some performance evaluation results

that highlight bene¯t of the implementation-independent architecture of OAM.

4.1. Ontology-based activity recognition engine in smart home

4.1.1. Scenario description

Smart home has emerged as one of the mainstream approaches to support technol-

ogy-driven independent living for elderly and disabled persons. The smart home

concept [31], [32] is combined with several technologies, i.e. wireless sensor network,

data communication, and security to produce ambient intelligence in the home.

Activity recognition system plays an important role in realizing the information in

the smart home environment and providing the relevant information back to the

home application for supporting the independent living and ageing in place. Cur-

rently, activity recognition systems aim to capture what humans do on a daily basis

[33], [34]. For example, knowing how long the home user sleeps at night [35] is

considered relevant information for the homecare system. User context can be

obtained based on diversity of sensors embedded into the objects in the home to

obtain context-aware infrastructure information. Thus, one objective of this project

is to develop a high-performance activity recognition framework based on ontology

and the data collected from a diversity of sensors.

4.1.2. Scenario implementation

The context-aware activity recognition engine (CARE) architecture is proposed for

automatic human activity recognition in the smart home domain. Figure 13 shows

the high-level CARE architecture. In this architecture, ontology is used as a means

to publish, access and analyse the large amount of data collected from a diversity of

sensors. Speci¯cally, ontology can provide the semantic information in the smart

home about human activity and user's context. The ontology is mapped with

the database storing data collected by a context sensor network (CSN) which obtains

the surrounding information from the home and individual. A data manager is

proposed to normalize and transform the data before storing it into the system

repository. To process the data, ontology-based activity recognition (OBAR) is

proposed for creating the knowledge base and activity model. Finally, the results of

activity recognition and semantic information can be retrieved through the semantic

132 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

ontology search system. Implementation details of the CARE architecture focusing

on roles of OAM framework is discussed as follows.

Data Collection

For sensing data in this architecture, the proposed CSN is placed at the beginning of

the architecture to collect the data from the home environment, including human

information. There are three kinds of sensor networks in the CSN: Home Appliance

Sensor Network, Home Furniture Sensor Network and Human Sensor Network.

. Home Appliance Sensor Network. To capture home appliance usage, a variety of

sensors, such as power consumption sensors and water-°ow sensors, are built into

the smart home. Most electrical home appliances can be detected by measuring the

change of electric current from the power consumption sensor. A water-°ow sensor

is also embedded in the smart home for monitoring the use of water ¯xtures such

as \Sink," \Shower," and \Flushing." In our research, there are two protocols for

sending the requested command to each sensor: ECHONET [36] and UPnP [37].

. Home Furniture Sensor Network. Furniture items in the home environment, such

as \Sofa," \Chair," or \Bed", can be combined with the home appliance infor-

mation to indicate the performance of speci¯c activities. For example, a user tends

to sit on a \Chair" when performing \Working on a computer" activity. In this

sense, a pressure sensor is attached to the chair to detect whether or not a human is

sitting on the chair. ZigBee protocol [37] is emulated for communication within the

home furniture sensor network.

Fig. 13. Architecture of context-aware activity recognition engine.

OAM: An Ontology Application Management Framework 133

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

. Human Sensor Network. A human sensor network is used to observe human in-

formation such as the location of the individual. Infrared sensors are deployed

in each room in the experimental environment to detect the human location.

The current location of the user can give useful hints about which activities the

individual is able to perform in the location.

Generally, posture classi¯cation and activity recognition are closely related re-

search areas [38]. A range-based algorithm [39] which focuses on three human pos-

tures: \Standing," \Sitting," and \Lying down" is proposed. Three ultrasonic sensors

were attached to the shoulder, hip, and knee to perform the range-based algorithm.

The ranges between body parts along the y-axis were measured and used for de-

termining the postures. For example, \Standing" and \Sitting" postures have dif-

ferent ranges between shoulder and knee, whereas a \Lying down" posture has little

di®erence in range values between body parts. The information from the human

body sensor is necessary to recognize the accurate activity results.

After the system obtains the data from the CSN and posture classi¯cation, the

raw data are normalized by a supplied missing data function or an eliminating noisy

data function. For example, an infrared sensor cannot recognize human location if

the user is stationary or only moves a little. In this case, the supplied missing data

function will retrieve the last location. A threshold technique is also adopted for

¯ltering the noise in some circumstances. For example, even though an electrical

device is turned o® (but still plugged in), the power consumption sensor still per-

ceives data from the electrical device. Thus, a lower boundary is set for removal of

this kind of noise.

Ontology Development

The context-aware infrastructure ontology was designed to elicit the semantic con-

text in the smart home. The superclass and subclass relationships were utilized. For

example, the Electric appliance class and Furniture class are subclasses of the Object

class. The Context class is a relevant class that relates location information and

surrounding entities such as sensor, object, and human posture. For example, from

Fig. 14, the \have sensor" property in the Context class provides a relation to the

Fig. 14. Example of context-aware infrastructure ontology.

134 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Sensor class, which is inherently linked to the Object class through the \AttachTo"

property. The \Current location" property in the Object class links to the Location

class. Human posture information is also integrated into the Context class through

the \have hum pos" property.

Data Processing

The system repository consists of a repository and a context controller. The repos-

itory is a relational database system. The context controller performs three main

data-processing tasks.

. Composing Data. The data in the repository are formed to the user's context. We

compose data every minute for one user's context. In the user's context, the system

can perceive various kinds of semantic information such as object activated, sensor

status, human posture, human location, and so on. OBAR will classify human

activity based on these user contexts.

. Mapping Data. The ontology model perceives the data in the repository through

this step. This task has duty to map between the properties and concepts in the

ontology model and the data structure in the repository via OAM data mapping

con¯guration as shown in Fig. 15(a). After this process, the system will generate

the results as RDF data. The results of mapping will be stored in the smart home

knowledge base for further processing.

(a) Mapping repository data to ontology (b) Managing activity recognition rules

(c) Searching context data and activity recognition results using application template

Fig. 15. Example use of the OAM framework in ontology-based activity recognition in smart home
domain.

OAM: An Ontology Application Management Framework 135

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

. Reprocessing Data. Our proposed method also utilizes historical information

in inferring human activity in the next classi¯cation. An external Java

program built on top of OAM API was implemented for capturing temporal

reasoning by collecting past classi¯cation results as an input for the next

classi¯cation.

Ontology-Based Activity Recognition

In the activity recognition task, an ontology-based approach was adopted to exploit

knowledge representation for context data modeling and to use logical reasoning to

perform activity recognition. There are four factors to be considered in this research:

object, human location, human posture and historical activity log. The following

example indicates a rule for recognizing the \Wash dishes" activity in Description

Logic syntax:

Wash dishes v KitchenActivity

u useðObject:FurnitureðSinkÞÞ
u Object:Human:Current�locationðKitchenÞ
u Human PostureðStandÞ
u LastActivity:Kitchen ActivityðEating or drinkingÞ

In this step, the OAM framework was used to create activity recognition rules

using the provided rule editor and template as shown in Fig. 15(b). Subsequently,

OAM transformed these rules to the syntax required by the rule-based reasoner.

Based on the OAM rule template, the Inferred Activity class was created to link it

with the inference results. At this stage, the smart home knowledge base has the rules

for deciding upon the activity. If an input context reaches the system and is con-

sistent with the rule linked with the instance of activities, the system will infer the

activity as a result of recognition. The reasoner subsequently stores the new activity

instance in the smart home knowledge base.

Knowledge Base Querying

The OAM search application template, i.e. semantic ontology search (SOS) system,

is adopted on top of the CARE architecture for utilizing the knowledge from the

OBAR. In this research, SOS is used for retrieving the history of semantic infor-

mation in a smart home based on the ontology concepts. The system allows the users

to set the search con¯guration based on the classes and properties in the ontology

model and perform faceted search of data in the smart home knowledge base via

SPARQL query templates. From a user viewpoint, the user can retrieve all semantic

data including inferred activity results based on the class in the context-aware in-

frastructure ontology (object, sensor, or context) or the property in each class (date,

time, or sensor status) as shown in Fig. 15(c). Evaluation of result accuracy is beyond

the scope of this paper and is reported in [29].

136 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

4.2. Ontology-based thalassemia clinical support system

4.2.1. Scenario description

Thalassemia is the common genetic disease which can become global threat unless

its spreading is e®ectively controlled. Prevention and control program for thal-

assemia has not been yet successful in Southeast Asian such as Thailand due to the

lack of ¯eld-related experts and supporting facilities [40]. Since the thalassemia

knowledge is highly complex and needs several speci¯c areas of expertise, such as

genetic analysis and interpretation of blood test, training su±cient number of

thalassemic paramedical personnel cannot be done in short time. To expedite

the process, a supporting system is necessary for assisting healthcare provider in

making a decision or interpretation related to the disease. An ontological knowl-

edge representation for thalassemia was developed to support related clinical

services including thalassemia status diagnosis and prediction of thalassemia

o®spring.

4.2.2. Scenario implementation

Designing for future standardization and reusability, an ontology-based knowledge

for thalassemia was constructed to support the clinical decision support system

(CDSS) development. The domain ontology is used as a global schema that is

mapped with the patient database which contains the patient health data lab results.

The ontology is subsequently used together with the rule-based knowledge to process

the data of examinees or patients for data analysis, e.g. interpretation of patient

status and prediction of new cases.

Similar to the smart home case study, the architecture of the thalassemia CDSS

involves ontology development, mapping of relational database data, i.e. patient

database, to the ontology model, recommendation rule management, i.e. diagnosis

and prediction rules, and knowledge base querying. Thus, the OAM framework

helped to simplify deployment of the system in these steps. For brevity, this section

only focuses on the role of OAM in this application while the deployment steps and

details are not elaborated.

Figure 16 shows a layered architecture of the ontology-based thalassemia CDSS.

A thalassemia ontology [30] was developed and aimed to provide support for four

assisting services: (1) to inform individual's thalassemic status from the laboratorial

test result, (2) to give probability of having a thalassemic child to at-risk couple (3)

to provide a treatment option and alert to thalassemia patient and (4) to specify

counselling options for counselling doctor. Currently only the ¯rst two services are

implemented in the prototype system. The thalassemia ontology, diagnosis and in-

terpretation rules, and a patient database can be provided as the input to the

Computing layer, implemented using the OAM framework, which is responsible for

generating a new copy of patient data and providing the analysis results for the

paramedical personnel in the Service layer.

OAM: An Ontology Application Management Framework 137

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

In developing the system, two deployment settings were considered: data analysis

and interactive settings. In the data analysis setting, the purpose was to evaluate

accuracy of the results produced by the diagnosis rules. Speci¯cally, the study aimed

to compare the CDSS diagnosis results with the existing actual physician diagnosis

results. In supporting the study, the CDSS adopted the OAM database-ontology

mapping function to generate the knowledge base of a clinical information system in

RDF from based on the patient database and domain ontology. The OAM recom-

mendation management function helped to simplify management of the diagnosis

rules and allowed the knowledge engineer to focus on domain logics rather than rule

language syntax. The knowledge base and recommendation rules were subsequently

processed by the OAM recommendation processor which created the diagnosis

results in the knowledge base. The semantic search application template was used for

querying and assessing results in the knowledge base. No programming task was

involved in this setting.

In the interactive setting, unlike the data analysis setting, a new diagnosis result is

generated only when the user submits a new patient record to the system via a Web-

based interface. In this setting, the OAM framework was adopted as an intermediate

processing layer between Web application and patient database. Speci¯cally, a Web

service was additionally built on top of the OAM API. Adoption of the OAM

framework in interactive setting, i.e. transaction-driven application, is beyond the

scope of this paper and will be elaborated in future research.

4.3. Performance evaluation

This section provides evaluation results of OAM in terms of system response time in

(1) publishing database data to the RDF knowledge base and (2) generating the

recommendation results in the knowledge base. The purpose is to provide some indi-

cators on scalability of the framework and to highlight bene¯t of the implementation-

independent architecture adopted by OAM.

Fig. 16. A layered architecture of ontology-based thalassemia CDSS.

138 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

4.3.1. Evaluation settings

The system response time was measured in terms of data publishing time and data

reasoning time. Data publishing time was measured from when the data is retrieved

from the database and transformed to the RDF data based on the mapping con-

¯guration. Data reasoning time was measured from when the RDF data was read

and processed by the recommendation processor component and the result was

stored in the RDF data storage. In measuring the data reasoning time, the results

of three di®erent recommendation engine implementations were compared: Jena

inference engine, Euler YAP Engine (EYE) and the SPARQL-based implementation

of the OAM recommendation template. The tests were performed on a computer

with the following speci¯cations: Intel core i5 – 430M CPU with 8 GB DDR3

memories, using Java Development Kit version 1.6 with minimum memory size 1 GB

and maximum memory size 4 GB. In each test, we warmed up the recommendation

engines by loading data and perform reasoning until the execution time was stable.

Then we measured the average system response time of three-time executions. The

datasets and rules from the case studies were prepared as follows:

OBAR in Smart Home. In this case study, there were total of 33 rules designed for

recognizing 13 targeted human activities. The test data were collected over a ran-

domly selected one-day period which consists of the total of 351 contexts, i.e. almost

six-hour of event data. Each context data is linked with the related collected data,

such as human position, active objects, locations and related past objects and ac-

tivities. The data is generated as ¯ve data sets in the size of 70, 140, 210, 280 and 351

contexts accordingly. The mapping con¯guration consists of mappings for nine

classes, 13 object properties, seven data properties and 43 subclasses.

Thalassemia CDSS. In this case study, the total of 34 rules was created for diagnosis of

17 thalassemia disease and carrier types. The test data were extracted from the Siriraj

hospital database entries of Thai patients whowere examined for thalassemia between

three years period. Each patient data consists of personal health data and lab results.

Five data sets containing di®erent numbers of patient data were prepared: 100, 500,

1000, 1500 and 2000 patients accordingly. The mapping con¯guration consists of

mappings for 20 classes, 15 object properties, 24 data properties and 39 subclasses.

4.3.2. Evaluation results

OBAR in Smart Home. The summary of the data set (number of records, triples

before and after reasoning) and overall performance results in terms of data pub-

lishing and reasoning time are shown in Table 1. The reasoning time is compared

among three di®erent recommendation engine implementations. Overall, the total

response time for data publishing and reasoning is less than one minute for ap-

proximately six-hour event data and about 20 seconds for approximately one-hour

event data. Jena inference engine has shown marginally better overall response time

than the OAM's SPARQL-based implementation for data reasoning. Based on the

OAM: An Ontology Application Management Framework 139

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

results, recognizing daily human activities by OBAR engine can achieve a reasonable

system response time using this framework.

Thalassemia CDSS. The summary of the data set and overall performance results in

terms of data publishing and reasoning time are shown in Table 2. The reasoning

time is compared among three di®erent recommendation engine implementations.

Overall, the total response time for publishing the data is approximately two minutes

for 2,000 patient data. The total response time for data reasoning for 2,000 patient

data is approximately less than ten minutes using Euler YAP engine and approxi-

mately less than two minutes using the OAM's SPARQL-based implementation.

Based on the results, data reasoning in the thalassemia CDSS can achieve a rea-

sonable system performance by choosing the appropriate implementation of the

OAM recommendation engine.

The good performance of the SPARQL-based implementation is largely achieved

by limited rule expressiveness of the OAM rule template. By limiting rule expres-

siveness, the customized SPARQL-based implementation is more e±cient than the

generic rule-based inference engines since less reasoning operations are performed.

5. Discussion

5.1. Bene¯ts and roles of the OAM framework in ontology-based

application

5.1.1. Ontology-based data publishing and access

The OAM framework publishes the RDF data that conform to a domain ontology.

Thus, data from any database source that can be mapped to the domain ontology

Table 1. Overall performance results of OBAR engine in smart home over the test data sets.

Data reasoning time (sec)

of events # of triples # of triples after rec. Data publishing time (sec) Jena's EYE SPARQL

70 5,941 25,031 14.36 5.55 8.68 7.25
140 10,048 43,653 20.33 9.27 13.08 10.81

210 13,830 60,781 22.66 8.39 15.89 13.19

280 17,554 77,655 26.94 13.94 20.80 15.66

351 19,560 86,416 29.77 15.01 25.18 16.52

Table 2. Overall performance results of the thalassemia CDSS over the test data sets.

Data processing time (sec)

of patients # of triples # of triples after rec. Data publishing time (sec) Jena's EYE SPARQL

100 8,238 63,724 20.88 10.76 21.74 12.76
500 31,438 291,702 46.37 80.13 105.91 37.26

1,000 60,438 576,473 75.30 266.38 238.87 61.35

1,500 89,438 861,472 103.37 548.94 425.44 83.94

2,000 118,438 1,146,892 131.04 772.60 567.88 112.28

140 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

can be merged for further publishing and processing. This allows the OAM-adopted

system to support future data integration with other data sources that agree on the

same domain ontology. In the case study of OBAR engine in smart home, a possible

use case includes support for processing sensor-based data from di®erent homes.

Speci¯cally, the OBAR engine can process any home's sensor database that can be

mapped with the domain ontology and the resulted RDF data may be merged and

shared with other smart home applications. In the thalassemia CDSS case study, a

possible use case includes merging data from several hospital database sources for

further data analysis.

5.1.2. Abstraction

In both case studies, the primary purpose of adopting the OAM Framework was to

help in rapid prototyping and hypothesis testing. Both of the case studies focused on

developing the domain knowledge and recommendation rules and evaluating the

recommendation result accuracy. The OAM Framework is ideal for such use cases

because it provides simpli¯ed data and application management functions to support

data analysis application. In addition, using the OAM framework for ontology-based

publishing of the existing database hides the complexity of relational database to

RDF data mapping language. In addition, the recommendation rule template and

editor hides the complexity of rule language syntax used by di®erent rule-based

reasoners. The application templates and API hide the complexity of SPARQL

queries used in faceted searching over the knowledge base data. The simpli¯cation

could contribute to promoting more adoption of the Semantic Web data standards

and tools.

5.1.3. Interoperability

Although the current implementation relies largely on D2RQ and Jena framework,

supporting additional implemented systems can be provided in future versions based

on wrapper architecture. The OAM framework adopts the internal data represen-

tation that is implementation-independent. Thus, changing the underlying imple-

mented systems will not require change on the user applications. For example, both

of the case studies can bene¯t from improved performance of the implementation

layer of the framework that would not require change in the user application layer.

In addition, the created knowledge base can be exported to the standard data

formats for sharing and reuse by another system. Exported OAM knowledge base

data typically includes ontology, instance and rule data as well as mapping and

application con¯gurations. In the thalassemia CDSS case study, this will allow the

patient data and thalassemia knowledge, i.e. ontology and rules, to be reused and

extended by other parties such as clinicians, researchers, hospitals, national statistics

bureau, etc. In the case study of OBAR engine in smart home, a possible use case

includes support for publishing home sensor databases that can be combined with

OAM: An Ontology Application Management Framework 141

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

other sources [41]. Speci¯cally, the shared knowledge base contains the user home

context data that can be retrieved and mash-up with other data sources, such

as mash-up with furniture and home device information. The OBAR knowledge,

i.e. ontology and rules, can also be used and extended by another smart home

application that wishes to utilize the knowledge.

5.2. Limitations of the framework

One of the limitations of the OAM framework is limited support for namespace

management. Speci¯cally, the created instance data will share the same namespace,

e.g. a local namespace. Thus, the published knowledge base cannot reference the

instance data outside the source database. This makes OAM has a limited support

for Linked data application, which typically requires data referencing between

di®erent data sources Vocabulary mapping is also not currently supported by OAM.

Vocabulary mapping is important for data integration and mash up. For example,

one class or property in an ontology may be the same as another class or property

that uses di®erent name in another ontology. By providing vocabulary mapping

facility on top of the application framework, the published knowledge base can be

integrated or mashed up with other data sources that use di®erent vocabularies.

Thus, to allow for better support for Linked data, namespace and vocabulary

management facilities should be additionally provided.

Although the templates, i.e. mapping, rule and query templates, were designed to

support common uses of the generic languages, the templates have only limited

features of the generic languages. For example, the current mapping con¯guration

template does not support variable usage in join condition, which is important when

joining a table to itself. In creating rules, rules that can not be represented using the

recommendation template must be provided manually by the users. Using query

template, some SPARQL features are not currently supported, such as optional,

negation and subqueries. These support may be added in the future versions.

In addition, OAM shares the same limitations as the underlying systems, i.e.

D2RQ, Jena's TDB [42]. For example, D2RQ provides no support for update or

multiple database integration facility to the published data [43]. These features may

be additionally provided by the application framework. In terms of system perfor-

mance, based on the Berlin SPARQL Benchmark results [44], TDB is not as scalable

as some triplestores or relational database systems. Future research will investigate

di®erent implementations of RDF data store by means of the wrapper architecture.

5.3. Conclusion and future work

With the ongoing Semantic Web initiative, development tools that allows for rapid

prototyping of ontology-based applications are needed. This paper introduces an

application framework designed for ontology-based Semantic Web applications that

focuses on providing reusable and con¯gurable data and application templates.

142 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Adopting the templates allows the users to create the applications without pro-

gramming skills required. Three forms of templates, which are speci¯c forms of

existing languages, are proposed: database to ontology mapping con¯guration, rec-

ommendation rule and application templates. We describe two case studies that

adopted the framework and how the framework was used in simplifying development

in both projects. In addition, we provide some performance evaluation results to

show that, by limiting expressiveness of the rule language, a specialized form of

recommendation processor can be developed for more e±cient performance. Some

advantages and limitations of the application framework in ontology-based appli-

cations are also discussed.

Some future development includes adding support for more application templates

such as decision support system and visualization applications. Future investigation

will focus on improving system performance, compatibility with various Semantic

Web data standards and tools and improved support for Linked Data applications.

Acknowledgments

The authors would like to acknowledge the ¯nancial supports from the Service In-

formatics and Young Scientist and Technologist Programmes, National Science and

Technology Development Agency (NSTDA), Thailand. All contributors to the

software tool development and adoption are gratefully acknowledged.

References

1. C. Bizer, T. Heath and T. Berners-Lee, Linked data ��� the story so far, Int. J. Semant.
Web Inf. Syst. 5(3) (2009) 1–22.

2. B. Heitmann, K. Sheila, H. Conor and S. Decker, Implementing semantic web applica-
tions: Reference architecture and challenges, in Proc. 5th Int. Workshop on Semantic
Web-Enabled Software Engineering, 2009.

3. M. Fayad and D. C. Schmidt, Object-oriented application frameworks, Commun. ACM
40(10) (1997) 32–38.

4. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Pearson Education, 1994).

5. H. Wache, T. V€ogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann and
S. Hübner, Ontology-based integration of information ��� a survey of existing approaches,
in Proc. Workshop on Ontologies and Information Sharing, 2001, pp. 108–117.

6. D. Calvanese, G. De Giacomo and M. Lenzerini, Description logics for information inte-
gration,Computational Logic: Logic Programming andBeyond. LNCS 2408 (2002) 41–60.

7. A. Schultz, A. Matteini, R. Isele, P. Mendes, C. Bizer and C. Becker, LDIF ��� a
framework for large-scale linked data integration, in Proc. 21st International World Wide
Web Conference, 2012.

8. B. Haslhofer, A Web-Based Mapping Technique for Establishing Metadata Interopera-
bility, University of Vienna, 2008.

9. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi and D. F. Savo, The MASTRO system for ontology-based data
access, Semant. Web 2(1) (2011) 43–53.

OAM: An Ontology Application Management Framework 143

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

10. E. Kharlamov et al., Optique: Towards OBDA systems for industry, in Proc. ESWC
(Satellite Events), 2013, pp. 125–140.

11. J. J. Carroll, D. Reynolds, I. Dickinson, A. Seaborne, C. Dollin and K. Wilkinson, Jena?:
Implementing the Semantic Web recommendations, in Proc. of the 13th international
World Wide Web Conference on Alternate Track Papers & Posters, 2004, pp. 74–83.

12. R. García-Castro, A. Gómez-P�erez, Ó. Muñoz-García and L. J. B. Nixon, Towards a
component-based framework for developing Semantic Web applications, in Proc. 3rd
Asian Semantic Web Conference, 2008, pp. 197–211.

13. E. Oren, A. Haller, C. Mesnage, M. Hauswirth, B. Heitmann and S. Decker, A °exible
integration framework for SemanticWeb 2.0 applications, IEEESoftw.24(5) (2007) 64–71.

14. M. Hausenblas, Exploiting linked data to build web applications, IEEE Internet Comput.
13(4) (2009) 68–73.

15. S. Auer et al., Managing the life-cycle of linked data with the LOD2 stack, in Proc. 11th
Int. Conf. on the Semantic Web ��� Volume Part II, 2012, pp. 1–16.

16. T. Kurz, S. Scha®ert and T. Burger, LMF: A framework for linked media, in Proc.
Workshop on Multimedia on the Web (MMWeb), 2011, pp. 16–20.

17. M. Buranarach, Y. Thein and T. Supnithi, A community-driven approach to develop-
ment of an ontology-based application management framework, Semantic Technology,
LNCS, 7774 (2013) 306–312.

18. C. Bizer and A. Seaborne, D2RQ-treating non-RDF databases as virtual RDF graphs, in
Proc. of the 3rd Int. Semantic Web Conf., 2004.

19. Apache Jena ��� Reasoners and rule engines Jena inference support. [Online]. Available:
http://jena.apache.org/documentation/inference [Jan. 4, 2015].

20. K. Kozaki, Y. Hayashi, M. Sasajima, S. Tarumi and R. Mizoguchi, Understanding
Semantic Web applications, in Proc. of the 3rd Asian Semantic Web Conf., 2008,
pp. 524–539.

21. C. Bizer, D2R MAP ��� a database to RDF mapping language, in Proc. of the 12th
International World Wide Web Conf., 2003.

22. T. C. Will, A. Srinivasan, I. Im and Y. B. Wu, Search personalization: Knowledge-based
recommendation in digital libraries, in Proc. AMCIS 2009, 2009, p. 728.

23. M. Kifer and H. Boley, RIF Overview (Second Edition), W3CWorking Group Note, 2013.
[Online]. Available: http://www.w3.org/TR/rif-overview/ [Jan. 4, 2015].

24. T. Berners-Lee and D. Connolly, Notation3 (N3): A readable RDF syntax, W3C Team
Submission, 2011. [Online]. Available: http://www.w3.org/TeamSubmission/n3/ [Jan. 4,
2015].

25. Euler Yet Another Proof Engine. [Online]. Available: http://eulersharp.sourceforge.net/
[Jan. 4, 2015].

26. S. Hawke, I. Herman, B. Parsia and A. Seaborne, SPARQL 1.1 Entailment Regimes,
W3C Recommendation, 2013. [Online]. Available: http://www.w3.org/TR/sparql11-
entailment/ [Jan. 4, 2015].

27. H. Knublauch, J. A. Hendler and K. Idehen, SPIN ��� Overview and Motivation, W3C
Member Submission, 2011. [Online]. Available: http://www.w3.org/Submission/spin-
overview/ [Jan. 4, 2015].

28. M. Hearst, Design recommendations for hierarchical faceted search interfaces, in Proc.
ACM SIGIR Workshop on Faceted Search, 2006.

29. K. Wongpatikaseree, A. O. Lim, M. Ikeda, and Y. Tan, High performance activity rec-
ognition framework for ambient assisted living in the home network environment, IEICE
Trans. 97-B(9) (2014) 1766–1778.

30. A. Assawamakin, N. Chalortham, T. Ruangrajitpakorn, C. Limwongse, T. Supnithi and
S. Tongsima, A development of knowledge representation for thalassemia prevention and

144 M. Buranarach et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

control program, in Proc. 7th Int. Conf. on Natural Language Processing and Knowledge
Engineering, 2011, pp. 190–193.

31. M. Chan, D. Est�eve, C. Escriba and E. Campo, A review of smart homes ��� present state
and future challenges, Comput. Methods Programs Biomed. 91(1) (2008) 55–81.

32. L. C. De Silva, C. Morikawa and I. M. Petra, State of the art of smart homes, Eng. Appl.
Artif. Intell. 25(7) (2012) 1313–1321.

33. J. B. J. Bussmann, W. L. J. Martens, J. H. M. Tulen, F. C. Schasfoort, H. J. G. Berg-
Emons, and H. J. Stam, Measuring daily behavior using ambulatory accelerometry: The
activity monitor, Behav. Res. Methods, Instruments, Comput. 33(3) (2001) 349–356.

34. S.-W. Lee and K. Mase, Activity and location recognition using wearable sensors, Per-
vasive Comput. IEEE 1(3) (2002) 24–32.

35. A. Gaddam, S. C. Mukhopadhyay and G. S. Gupta, Integrating a bed sensor in a smart
home monitoring system, in Proc. IEEE Instrumentation and Measurement Technology,
2008, pp. 518–521.

36. S. Matsumoto, Echonet: A home network standard, Pervasive Comput. IEEE 9(3) (2010)
88–92.

37. K.-S. Kim, C. Park, K.-S. Seo, I.-Y. Chung and J. Lee, ZigBee and the UPnP expansion
for home network electrical appliance control on the Internet, in Proc. 9th Int. Conf. on
Advanced Communication Technology, 2006, pp. 1857–1860.

38. M.-W. Lee, A. Khan and T.-S. Kim, A single tri-axial accelerometer-based real-time
personal life log system capable of human activity recognition and exercise information
generation, Pers. Ubiquitous Comput. 15(8) (2011) 887–898.

39. K. Wongpatikaseree, A. O. Lim, Y. Tan and H. Kanai, Range-based algorithm for posture
classi¯cation and fall-down detection in smart homecare system, in Proc. IEEE 1st Global
Conference on Consumer Electronics, 2012, pp. 243–247.

40. S. Fucharoen and P. Winichagoon, Prevention and control for thalassemia in Asia, Asian
Biomed. 1(1) (2007) 1–6.

41. D. Le-Phuoc, H. N. M. Quoc, J. X. Parreira and M. Hauswirth, The linked sensor mid-
dleware–connecting the real world and the semantic web, in Proc. of the Semantic Web
Challenge, 2011.

42. The Apache Software Foundation, Apache Jena ��� TDB. [Online]. Available: http://
jena.apache.org/documentation/tdb/ [Jan. 4, 2015].

43. C. Bizer and R. Cyganiak, D2RQ ��� Lessons Learned, Position paper for the W3C
Workshop on RDF Access to Relational Databases, 2007. [Online]. Available: http://
www.w3.org/2007/03/RdfRDB/papers/d2rq-positionpaper/ [Jan. 4, 2015].

44. C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, Int. J. Semant. Web Inf. Syst.
5(2) (2009) 1–24.

OAM: An Ontology Application Management Framework 145

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
15

-1
45

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
85

.1
29

.2
51

 o
n

01
/1

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

	OAM: An Ontology Application Management Framework for Simplifying Ontology-Based Semantic Web Application Development
	1. Introduction
	2. Background and Related Work
	2.1. Ontology-based data publishing and access
	2.2. Semantic Web application framework

	3. Design and Implementation of the OAM Framework
	3.1. Community-driven software tool development
	3.2. Conceptual architecture
	3.3. Database to ontology data mapping framework
	3.3.1. Class-table mapping
	3.3.2. Property-column mapping
	3.3.3. Example of database schema to ontology mapping

	3.4. Recommendation management framework
	3.4.1. Recommendation template
	3.4.2. System architecture
	3.4.3. Implementation of the recommendation processor

	3.5. Application template and programming interface
	3.5.1. Application template
	3.5.2. Application programming interface

	4. Case Studies
	4.1. Ontology-based activity recognition engine in smart home
	4.1.1. Scenario description
	4.1.2. Scenario implementation

	4.2. Ontology-based thalassemia clinical support system
	4.2.1. Scenario description
	4.2.2. Scenario implementation

	4.3. Performance evaluation
	4.3.1. Evaluation settings
	4.3.2. Evaluation results

	5. Discussion
	5.1. Benefits and roles of the OAM framework in ontology-based application
	5.1.1. Ontology-based data publishing and access
	5.1.2. Abstraction
	5.1.3. Interoperability

	5.2. Limitations of the framework
	5.3. Conclusion and future work

	Acknowledgments
	References

